46 RTS2-L 系列

远程拉曼测试系统

近年发展的远程拉曼光谱探测技术,是根据拉曼散射效应远距离探测物质的技术,通过技术的发展及应用的拓展,目前已在行星、矿物勘测、远程爆炸物探测、化学物质泄漏和污染物测量等方面有很高的应用价值。国际目前常用的程拉曼探测系由以下部分组成:激发光源、光路收集模块、分光模块、探测模块、数据采集与分析模块。

技术优势

- · 多种收集器可选,适应 0mm-1000mm 甚至更远距离的探测
- 连续激光器 / 脉冲激光器可选
- · 多种分光光谱仪可选,光栅光谱仪 可实现高分辨率,VPH 光谱仪实现 高通光量
- · 多种探测器可选,背照式深耗尽型 光谱 CCD 相机和 ICCD 可选

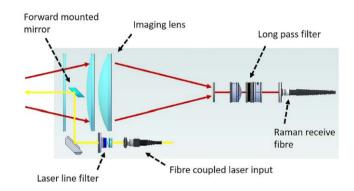
系统方案配置与选型

激光波长	连续激光器:405, 514, 532, 633, 670, 671, 785, 808 nm(其他可选) 脉冲激光器:532nm,线宽 < 0.005 cm ⁻¹ ,10Hz,290mJ
拉曼频移 范围	100-4000cm ⁻¹ (不同激光可能不同)
探测距离	0-30mm@ 显微拉曼系统 30-100mm@ 拉曼探头 >100mm@ 卡塞格林望远镜拉曼系统
光谱仪	CT 式 320 mm 焦长光谱仪 透射式 VPH 光谱仪
光谱	科研级 CCD 探测器: 2000x256 像素,背照式深耗尽芯片,QE>90%,300-1100nm 响应,峰值效率 95%,深度制冷到 -60℃ 像增强型 CCD 探测器:1024*1024 像素,2ns 门控, 280 - 810nm 响应,增益大于 200
光谱分辨 率	<1.5cm ⁻¹ @ 光栅光谱仪 < 5cm ⁻¹ @VPH 光谱仪

拉曼探头

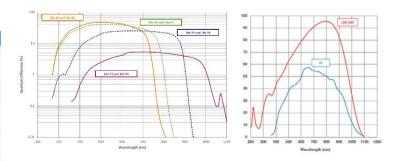
望远镜

光谱仪


类型	C-T 式影像 校正光谱仪	VPH 光谱仪
焦距	320mm 焦距	85mm 焦距
通光孔径	F/4.2	F/1.8
光谱范围	200-1100nm	532-680nm
光谱分辨率	优于 2cm ⁻¹ @1800 刻线光栅	5cm ⁻¹ @1800 刻线光栅

探测器

类型	ICCD	CCD
有效像素	1024*1024	2000 x 256
像元尺寸	13μm*13μm	15 x 15 μm
有效探测面尺寸 (18mm MCP)	13.3mm*13.3mm	
最短光学门宽	< 2ns	无
读出噪声	5 e-	4.5 e-
门控	2ns	无
响应范围	280 - 810nm	200-1100nm


激发波长	405, 514, 532, 633, 670, 671, 785, 808 nm. 其他可选
光谱范围	100-4000 cm ⁻¹ (不同激光器范围不同)
焦距	20 mm to 100 mm
样品端光斑大小	~100 µm @ 100 µm 芯径激发光纤
工作距离	20 ~100 mm
数值孔径	0.22 @40 mm 焦距
探头尺寸	2.25" L x 0.96" W x 0.58" H
探头材质	超硬氧化铝或者 316 不锈钢
探头柄尺寸	1.125" 直径 x 3.8" 长度
探头柄材质	316 不锈钢
滤光片效率	O.D >6
操作温度	0-85 ° C
最大操作压力	15 psi
光纤配置	100/100 μm 标准配置,其他可选
接口类型	FC 或者 SMA
其他	可定制

激发波长	532nm,785nm,其他可定制
光谱范围	200-4000 cm ⁻¹ (不同激光器范围不同)
焦距	1000mm 标配,其他可选
样品端光斑大小	~100 µm @ 100 µm 芯径激发光纤
激光器接口	FC/APC
光谱仪接口	SMA

激光器

激光器	脉冲激光器	光纤激光器
激发波长	532nm	532nm
脉冲能量 / 功率	290mJ	100mW
重复频率	10Hz	CW
线宽	$< 0.005 \text{ cm}^{-1}$	< 0.00001nm

行星探

测

典型应用

中国科学院万雄老师设计了一款激光诱导击穿光谱 LIBS+ 拉曼系统在火星模拟环境下矿物样品的综合检测能力,采用卡塞格林望远镜结构,远程脉冲拉曼光谱激发,成功检测了8种典型矿物质(孔雀石、蓝铜矿、雄黄、文石、方解石、硬石膏和石膏等),实验结果表明,该系统可以在火星条件下有效分析矿物种类和成分。

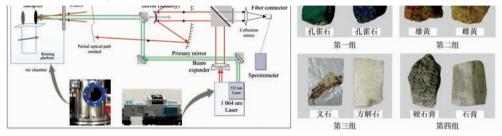
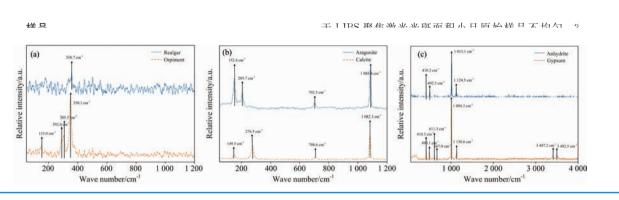
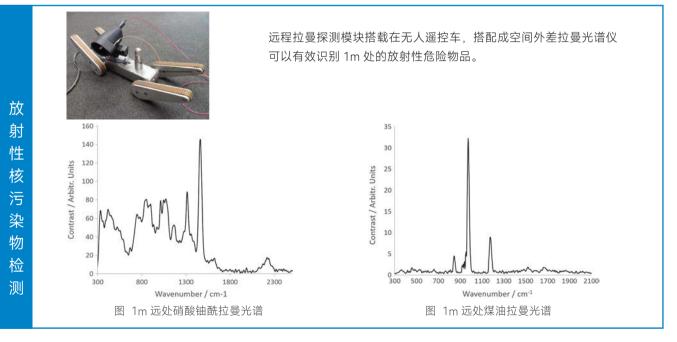




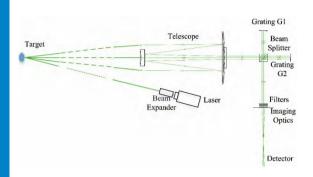
图 1 LIBS-Raman 联用光谱实验系统的光学结构及测试样品

Fig. 1 Optical structure of the instrument with LIBS-Raman (a) and experimental samples (b)

引用文献:

- [1] 袁汝俊,万雄,王泓鹏.基于远程 LIBS-Raman 光谱的火星矿物成分分析方法研究 [J]. 光谱学与光谱分析, 2021, 41(4): 1265.
- [2] Foster M, Wharton M, Brooks W, et al. Remote sensing of chemical agents within nuclear facilities using Raman spectroscopy[J]. Journal of Raman spectroscopy, 2020, 51(12): 2543-2551.

测


矿

物

勘

探

远程拉曼光谱探测技术在矿物与有机质分析方面的独特能力,使得这一技术非常适用于行星表面探测等任务中。

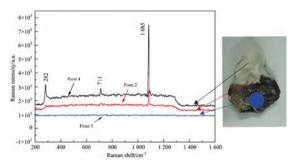
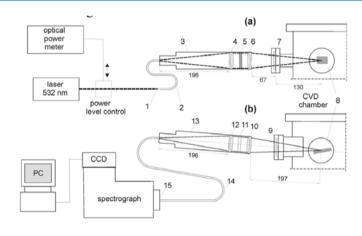
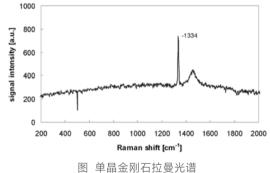




图 某含碳酸钙天然石块拉曼光谱分布

远程拉曼光谱技术可实现原位监测材料生长过程,如成分含量、结晶度、缺陷量、薄膜生长速率等参数。M. Gnyba等人设计远程拉曼光谱技术用于原位监测 CVD 制备金刚石膜生长过程,探测距离最高达 197mm,文中采用的工作距离为 20cm。

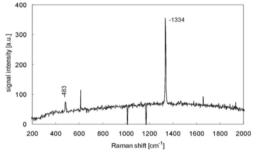
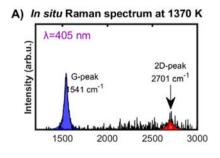



图 金刚石薄膜拉曼光谱

远程拉曼光谱可用于材料生长过程中层数、堆叠、缺陷密度和掺杂等参数。M. N. Groot 等人采用显微远程拉曼系统分析液态金属催化 CVD 制备大面积石墨烯材料的生长过程,实现了从连续多晶薄膜生长为毫米级无缺陷单晶。

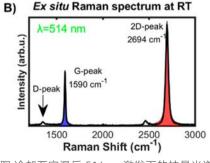


图 1370k 下 405nm 激发的拉曼光谱图

图 冷却至室温后 514nm 激发下的拉曼光谱图